82 research outputs found

    A novel protein-coding ORF72.2 gene was identified from Marek's disease virus strain CVI988

    Get PDF
    Marek's disease is a highly contagious disease of poultry characterized by rapid-on set of T-cell lymphomas, which is caused by Marek's disease virus (MDV), but its pathogenic mechanism is still not very clear. Recently, some new progress were achieved in molecular character of MDV. Along with the genomic sequencing of MDV serotype 1, some novel open reading frames (ORFs) were predicted, and ORF72.2 was one of them which have no homologues in other MDV serotypes or in other alphaherpesvirus. In the study, ORF72.2 was firstly identified as a protein-coding gene by the method of reverse transcription polymerase chain reaction (RT-PCR), western blotting and indirect immunofluorescence assay. This study paved the way to conduct further studies to determine whether ORF72.2 plays a role in MDV replication and pathogenicity

    Comparative analysis of oncogenic genes revealed unique evolutionary features of field Marek's disease virus prevalent in recent years in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Marek's disease (MD) is an economically important viral disease of chickens caused by Marek's disease virus (MDV), an oncogenic herpesvirus. This disease was well controlled since the widespread use of commercial vaccines, but field MDVs have shown continuous increasing in virulence and acquired the ability to overcome the immune response induced by vaccines. Nowadays, MD continues to be a serious threat to poultry industry, isolation and characterization of MDVs are essential for monitoring changes of viruses and evaluating the effectiveness of existing vaccines.</p> <p>Results</p> <p>Between 2008 and 2010, 18 field MDV strains were isolated from vaccinated chicken flocks in Sichuan province, China. Three oncogenic genes including Meq, pp38 and vIL-8 genes of the 18 isolates were amplified and sequenced. Homology analysis showed that the deduced amino acid sequences of these three genes exhibit 95.0-98.8%, 99.3-100% and 97.0-98.5% homology respectively with these of other reference strains published in GenBank. Alignment analysis of the nucleotide and deduced amino acid sequences showed that four amino acid mutations in Meq gene and two amino acid mutations in vIL-8 gene displayed perfect regularity in MDVs circulating in China, which could be considered as features of field MDVs prevalent in recent years in China. In addition, one amino acid mutation in pp38 gene can be considered as a feature of virulent MDVs from USA, and three amino acid mutations in Meq gene were identified and unique in very virulent plus (vv+) MDVs. Phylogenetic analysis based on Meq and vIL-8 protein sequences revealed that field MDVs in China evolved independently. Virulence studies showed that CVI988 could provide efficient protection against the field MDVs epidemic recently in China.</p> <p>Conclusions</p> <p>This study and other published data in the GenBank have demonstrated the features of Meq, pp38 and vIL-8 genes of MDVs circulating in recent years in Sichuan, China. Mutations, deletions or insertions were observed in these three genes, and some mutations could be considered as the unique marks of the MDVs circulating presently in China. The paper supplies some valuable information concerning the evolution of MDV which is useful for the vaccine development and control of MD in China.</p

    Genomic traits of multidrug resistant enterotoxigenic Escherichia coli isolates from diarrheic pigs

    Get PDF
    Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) infections poses a significant challenge in global pig farming. To address this issue, the study was conducted to identify and characterize 19 ETEC isolates from fecal samples of diarrheic pigs sourced from large-scale farms in Sichuan Province, China. Whole-genome sequencing and bioinformatic analysis were utilized for identification and characterization. The isolates exhibited substantial resistance to cefotaxime, ceftriaxone, chloramphenicol, ciprofloxacin, gentamicin, ampicillin, tetracycline, florfenicol, and sulfadiazine, but were highly susceptible to amikacin, imipenem, and cefoxitin. Genetic diversity among the isolates was observed, with serotypes O22:H10, O163orOX21:H4, and O105:H8 being dominant. Further analysis revealed 53 resistance genes and 13 categories of 195 virulence factors. Of concern was the presence of tet(X4) in some isolates, indicating potential public health risks. The ETEC isolates demonstrated the ability to produce either heat-stable enterotoxin (ST) alone or both heat-labile enterotoxin (LT) and ST simultaneously, involving various virulence genes. Notably, STa were linked to human disease. Additionally, the presence of 4 hybrid ETEC/STEC isolates harboring Shiga-like toxin-related virulence factors, namely stx2a, stx2b, and stx2e-ONT-2771, was identified. IncF plasmids carrying multiple antimicrobial resistance genes were prevalent, and a hybrid ETEC/STEC plasmid was detected, highlighting the role of plasmids in hybrid pathotype emergence. These findings emphasized the multidrug resistance and pathogenicity of porcine-origin ETEC strains and the potential risk of epidemics through horizontal transmission of drug resistance, which is crucial for effective control strategies and interventions to mitigate the impact on animal and human health

    Construction of an artificial recombinant bicistronic plasmid DNA vaccine against porcine rotavirus

    Get PDF
    The attenuated Salmonella typhimurium χ4550 strain was used to harbour a reconstructed bicistronic DNA vaccine against porcine rotavirus, which carried the rotavirus nonstructural protein 4 (NSP4) and VP7 genes simultaneously. Using a balanced lethal system, the kanamycin resistance gene of expressing eukaryotic plasmids pVAX1 and pVAXD were replaced by the aspartate β-semialdehyde dehydrogenase (asd) gene. The NSP4 cleavage product (259–525) of rotavirus OSU strain and VP7 full-length genes were amplified by reverse transcription polymerase chain reaction and then inserted into the eukaryotic single-expression plasmid, pVAX1-asd, and the eukaryotic dual-expression plasmid, pVAXD-asd, respectively. The recombinant plasmids pVAX1-asd-NSP4, pVAX1-asd-VP7 and pVAXD-asd-NSP4-VP7 were transformed into the attenuated S. typhimurium χ4550 strain by electrotransformation. An indirect immunofluorescence assay of the expressed COS-7 cell suggested that the recombinant S. typhimurium χ4550 strain was constructed successfully. The recombinant S. typhimurium χ4550 strain was orally administered to BALB/c mice. The group immunised with dual- expression plasmids produced a significantly higher level of serum Immunoglobulin G (IgG) and intestinal Immunoglobulin A (IgA) than the group immunised with single-expression plasmids. These results indicated that eukaryotic bicistronic plasmid DNA vaccines could be successfully constructed to enhance humoural, mucosal and cellular immune response against rotavirus infection

    Development and efficacy evaluation of remodeled canine parvovirus-like particles displaying major antigenic epitopes of a giant panda derived canine distemper virus

    Get PDF
    Canine parvovirus (CPV) and Canine distemper virus (CDV) can cause fatal diseases in giant panda (Ailuropoda melanoleuca). The main capsid protein of CPV VP2 can be self-assembled to form virus-like particles (VLPs) in vitro, which is of great significance for potential vaccine development. In the present study, we remodeled the VP2 protein of a giant panda-derived CPV, where the major CDV F and N epitopes were incorporated in the N-terminal and loop2 region in two combinations to form chimeric VLPs. The reactivity ability and morphology of the recombinant proteins were confirmed by Western blot, hemagglutination (HA) test and electron microscopy. Subsequently, the immunogenicity of the VLPs was examined in vivo. Antigen-specific antibodies and neutralizing activity were measured by ELISA, hemagglutination inhibition (HI) test and serum neutralization test (SNT), respectively. In addition, antigen specific T cell activation were determined in splenic lymphocytes. The results indicated that the VLPs displayed good reaction with CDV/CPV antibodies, and the heterologous epitopes do not hamper solubility or activity. The VLPs showed decent HA activity, and resembled round-shaped particles with a diameter of 22–26 nm, which is identical to natural virions. VLPs could induce high levels of specific antibodies to CPV and CDV, shown by the indication of neutralizing antibodies in both VP2N and VP2L VLPs group. In addition, splenic lymphocytes of mice immunized with VLPs could proliferate rapidly after stimulation by specific antigen. Taken together, the CPV VP2 VLPs or chimeric VLPs are highly immunogenic, and henceforth could function as CPV/CDV vaccine candidates for giant pandas

    The molecular diversity of transcriptional factor TfoX is a determinant in natural transformation in Glaesserella parasuis

    Get PDF
    Natural transformation is a mechanism by which a particular bacterial species takes up foreign DNA and integrates it into its genome. The swine pathogen Glaesserella parasuis (G. parasuis) is a naturally transformable bacterium. The regulation of competence, however, is not fully understood. In this study, the natural transformability of 99 strains was investigated. Only 44% of the strains were transformable under laboratory conditions. Through a high-resolution melting curve and phylogenetic analysis, we found that genetic differences in the core regulator of natural transformation, the tfoX gene, leads to two distinct natural transformation phenotypes. In the absence of the tfoX gene, the highly transformable strain SC1401 lost its natural transformability. In addition, when the SC1401 tfoX gene was replaced by the tfoX of SH0165, which has no natural transformability, competence was also lost. These results suggest that TfoX is a core regulator of natural transformation in G. parasuis, and that differences in tfoX can be used as a molecular indicator of natural transformability. Transcriptomic and proteomic analyses of the SC1401 wildtype strain, and a tfoX gene deletion strain showed that differential gene expression and protein synthesis is mainly centered on pathways related to glucose metabolism. The results suggest that tfoX may mediate natural transformation by regulating the metabolism of carbon sources. Our study provides evidence that tfoX plays an important role in the natural transformation of G. parasuis

    Basic Characterization of Natural Transformation in a Highly Transformable Haemophilus parasuis Strain SC1401

    No full text
    Haemophilus parasuis causes Glässer's disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401

    QseC Mediates Osmotic Stress Resistance and Biofilm Formation in Haemophilus parasuis

    No full text
    Haemophilus parasuis is known as a commensal organism discovered in the upper respiratory tract of swine where the pathogenic bacteria survive in various adverse environmental stress. QseC, a histidine protein kinase of the two-component regulatory systems CheY/QseC, is involved in the environmental adaptation in bacteria. To investigate the role of QseC in coping with the adverse environment stresses and survive in the host, we constructed a qseC mutant of H. parasuis serovar 13 strain (ΔqseC), MY1902. In this study, we found that QseC was involved in stress tolerance of H. parasuis, by the ΔqseC exhibited a decreased resistance to osmotic pressure, oxidative stress, and heat shock. Moreover, the ΔqseC weakened the ability to take up iron and biofilm formation. We also found that the QseC participate in sensing the epinephrine in environment to regulate the density of H. parasuis

    Construction and immunogenicity of a ∆apxIC/ompP2 mutant of <i>Actinobacillus pleuropneumoniae</i> and <i>Haemophilus parasuis</i>

    No full text
    The apxIC genes of the Actinobacillus pleuropneumoniae serovar 5 (SC-1), encoding the ApxIactivating proteins, was deleted by a method involving sucrose counter-selection. In this study, a mutant strain of A. pleuropneumoniae (SC-1) was constructed and named DapxIC/ ompP2. The mutant strain contained foreign DNA in the deletion site of ompP2 gene of Haemophilus parasuis. It showed no haemolytic activity and lower virulence of cytotoxicity in mice compared with the parent strain, and its safety and immunogenicity were also evaluated in mice. The LD50 data shown that the mutant strain was attenuated 30-fold, compared with the parent strain (LD50 of the mutant strain and parent strain in mice were determined to be 1.0 × 107 CFU and 3.5 × 105 CFU respectively). The mutant strain that was attenuated could secrete inactivated ApxIA RTX toxins with complete antigenicity and could be used as a candidate live vaccine strain against infections of A. pleuropneumoniae and H. parasuis.</em
    corecore